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According to (13), if power [A I 2 enters port 1, then
power A2‘ 531| 2 will come out port 3, and if power 42 is
put in port 2, power |A|2|Su|?=]A4]2Su|? will be
reflected. This is precisely the result sought.

A special case of this result, obtained by Aitken and
McLean [8], states that, if the junction is symmetric,
the power reflected at port 1 and the power out port 3
will be equal. This follows since, if the junction is
symmetric, Su=Ss and | 4|2 Su|?=|4]2|Su|

The fact that the derivation of (13) did not require
symmetry makes the result particularly useful to the
experimentalist since he will, in general, be dealing with
junctions that are not truly symmetric.
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Generalized Plots of Mode Patterns in a Cylindrical
Dielectric Waveguide Applied to Retinal Cones

G. BIERNSON, SENIOR MEMBER, IEEE, AND D. J. KINSLEY

Abstract—Generalized curves are presented which describe the
characteristics of the 12 lowest cutoff-frequency modes of an elec-
tromagnetic wave propagating down an infinite lossless dielectric
rod, surrounded by an infinite lossless medium of lower dielectric
constant. These curves were developed by a computer study par-
ticularly to analyze the optical mode patterns generated within the
photosensitive portions of the cones of the retina. However, they
should also be particularly useful in the study of fiber optics and di-
electric microwave antennas.

I. INTRODUCTION
Q- DIELECTRIC rod surrounded by a medium of

lower dielectric constant acts as a waveguide.
However, the characteristics of the modes propa-
gated in such a waveguide are more complex than in the
more familiar metallic waveguide case because 1) part
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of the energy propagates outside the dielectric rod, and
2) the spatial distribution of the energy in a mode varies
with wavelength. In a metallic waveguide, all the energy
is contained within the waveguide, and the shape of a
mode is the same over the frequency range at which it
can exist.

Stratton [1] has shown that the characteristics of the
modes can be obtained by solving a complicated trans-
cendental equation containing Bessel and Hankel func-
tions. Snitzer [2] has discussed the nature of the modes
which arise from solutions of this equation. This paper
presents the results of a digital computer solution of this
equation, which has provided a series of generalized
curves describing the characteristics of the 12 modes
having the lowest cutoff {requencies. This approach can
be extended to include other modes. The spatial dis-
tribution of energy in a given mode is characterized by
a Bessel function of a particular order. For each mode,
the Bessel-function argument at the boundary of the
rod (designated u) is plotted vs. a nondimensional fre-
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quency v for selected values of relative dielectric con-
stant §. From these curves, the Bessel-function argu-
ment at the boundary of the rod can be found at any
frequency, and this specifies the actual energy distribu-
tion in the rod.

The analysis of the cylindrical dielectric waveguide
appears to have a practical application in the study of
the mechanism of color vision in the human eye. The
photosensitive portions of the visual receptors of the
retina are cylindrical structures having radii roughly
equal to a wavelength of light. With such small radii,
these cylindrical structures should be considered to be
dielectric waveguides, since light can propagate down
them in only a few modes. Enoch [3], [4] has observed,
from light emanating from the tips of the receptors,
waveguide mode patterns corresponding to the 12
modes having the lowest cutoff frequencies.

There is good reason to believe that these waveguide
effects in the photosensitive portions of the cones may
produce spectral discrimination in color vision [5]. The
purpose of this study of waveguide modes has been to
explore this possibility by determining the energy dis-
tributions across the receptor produced by particular
waveguide modes, as a function of wavelength.

II. GENERAL RESULTS

We are considering the case of an infinite lossless
dielectric rod, which we will call the core, surrounded by
an infinite dielectric medium of lower dielectric con-
stant, which we will call the cladding. Our problem is to
determine the characteristics of modes that are capable
of propagating in this structure.

Appendix A presents a derivation of equations de-
scribing the characteristics of the modes. These were
evaluated by a digital computer program (which is dis-
cussed in Appendix B) to produce generalized curves
for the 12 modes with the lowest cutoff frequencies. To
help orient the reader, this section presents a simple set
of curves which provide approximate values for the
characteristics of the modes. Section III presents a
complete set of curves for precise calculation.

Within the core, the electric and magnetic field vec-
tors for a mode are represented by Bessel-function ex-
pressions. We will describe the characteristics of a mode
by specifying the parameter #, defined as the argument
of the Bessel function at the boundary between the core
and cladding (i.e., at the circumference of the dielectric
rod). For the case of a small difference in dielectric con-
stant between core and cladding, each mode can be
approximately described by a single curve relating the
parameter # to a nondimensional frequency v. The non-
dimensional frequency v is proportional to the actual
frequency v of the electromagnetic wave and is defined
as

v = Q2ra/)vVe — e v=2rvVe — & (a/N) (1)
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where

v=optical frequency in c/s,

A =wavelength,

a =radius of core,
ny=1index of refraction of core,
ne=1index of refraction of cladding,
e’ =n,% =dielectric constant of core,
&’ =no? =dielectric constant of cladding,
c=speed of light.

Figure 1 gives the approximate plots of #, the Bessel-
function argument at the boundary, vs. the nondimen-
sional frequency v for the 12 modes with the lowest cut-
off frequencies. These curves hold approximately for
the case of a small difference in dielectric constant be-
tween core and cladding. As is shown, a number of
modes have the same approximate plot of % vs. v for
this case. These modes also have approximately the

same energy distribution plots for this case, although
the E-field and H-field plots are different.

TE02 HE22

EHyy HEy

51 5,136

HE]2

3832

sl
TMy; TEgy HEpy

2.405

ol gy

U - BESSEL FUNCTION ARGUMENT AT BOUNDARY

V - NORMALIZED FREQUENCY

Fig. 1. Plots for §=0 of Bessel-function argument » at boundary vs.

nondimensional frequency » for the various modes.

To obtain a precise value for #, we can describe each
mode by a family of curves, each one corresponding to
a particular ratio of dielectric constant of the core to di-
electric constant of the cladding. It is convenient to
express this ratio in terms of the parameter §, defined as

0 = (Ell — €2I)/61, = (1112 — nzz)/m?. (2)

Section III gives for each of the 12 modes a family of
curves of # vs. v for values of § from 0 to 0.5.

The approximate curves of % vs. v in Fig. 1 represent
the limiting case where 8 approaches zero, which we ex-
press simply as §=0. Although the §=0 case is un-
realistic, the curves of % vs. v which result for small but
realistic values of § are not much different from the
curve for § =0, which is also shown in Section III.
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For a particular mode, the electric E-field and mag-
netic H-field components along the direction of propa-
gation (called the z direction) are proportional to

E, = J,(ur/a) cos nb exp {i[} (z/a) — wt]} (3)
H, = oJ,(ur/a) sin nf exp {i[lz’(zl/a) — wt]} €]

where

n=integer from 0 to o representing order of mode
Jn=Bessel function of nth order

7 =radial distance from axis of core

z=distance measured along axis of core

§ =angle measured about axis of core
w=27v=angular frequency of optical wave

a =32 constant

&’ =normalized propagation constant.

The constant 4’ is equal to
W= /(1/8)v* — ul. (5)

For each value of #, the transcendental equation that
characterizes the modes has two infinite sets of solutions,
which define two sets of modes. For >0, the two sets
of modes are labeled HE,,, and EH,,,, where the sub-
script m takes on integer values from one to infinity.
Snitzer [2] gives a detailed discussion of the basis for
this nomenclature. For =0, the two sets of modes are
labeled TE,,, and TM,, or specifically TE, and TMy,.

The TEq, and TMg, modes are called transverse elec-
tric and transverse magnetic modes, respectively, be-
cause the electric E field for a TEy, mode is completely
transverse (there is no E-field component in the direc-
tion of propagation), and the magnetic H field for a
TM,,, mode is completely transverse. The EH,, and
HE,,, are called hybrid modes because they have both
E and H fields along the direction of propagation.

As was shown in (3) and (4) the subscript # is an inte-
ger (from zero to infinity) that establishes the order of
the Bessel function describing the E.- or H,-field com-
ponents. For each value of # there are two infinite sets
of modes, labeled TE, and TMy, for #=0, or HE,,
and EH,, for #>1. The parameter m varies from one
to infinity and designates the sequence of a particular
mode in either of these infinite sets. To solve for the
parameters of the modes, an oscillatory Bessel-function
expression is approximately equated to a monotonically
decaying Hankel function expression. A separate solu-
tion occurs at every cycle of the Bessel function (except
possibly the first cycle), and the parameter m describes
which of these solutions is being considered.

The higher the values of # and m, the higher is the
cutoff frequency for the mode. In those situations where
the mode concept is useful, there are usually only a few
modes that are above cutoff in the frequency range of
interest.
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The power being propagated along the waveguide is
characterized by the power density along the z direc-
tion, denoted .S,. If the value of § is small, as in the case
of retinal receptors, the power density .S, for an individ-
ual mode is not a function of 2 or 8, but varies only with
the radial distance 7. Within the core the energy density
is proportional to

S, o« [Jur1(ur/a)]? forr<a (6)

where the plus sign holds for EH modes, the minus sign
for HE modes. For the TE and TM modes, either sign
can be used, because for #=0 the expressions for both
signs are equal.

In the cladding, the field is characterized by Hankel
functions. The power density propagating in the Z
direction is proportional to

S, « [Kpsi(wr/a)]? forr > a @)

where the parameter w is defined as
w = /0% — ul (8)

Again, in (7) the plus sign holds for the EH modes, the
minus sign for the HE modes, and either sign may be
used for the TE and TM modes. The function K, repre-
sents the pth-order modified Hankel function. This func-
tion is positive for positive argument and decays mono-
tonically to zero with increasing positive argument. For
small values of § there is no discontinuity of power
density S, across the boundary between core and
cladding.

Figure 2 gives normalized plots of J,2(x), for p =0,
1, 2, 3. By (6), these can be used to form plots of power
density S, as functions of radial distance for the various
modes by noting that the value x = corresponds to the
boundary between core and cladding. The modes cor-
responding to the particular values of p are indicated.

It is often convenient to consider the power falling
within an annular ring of constant width, which is
proportional to (rS.). For this purpose, Fig. 3 gives
normalized plots of xJ,2(x) for p=0, 1, 2, 3, which can
be used to obtain plots of power density within an
annular ring.

When more than one mode is present, interference
between the modes can occur, and the power density .S,
can vary with 8 and z as well as with . Nevertheless, if
we consider the total power propagating through an an-
nular ring, averaged over the axial distance 2, the inter-
ference effects between modes would cancel out, and the
plots of Fig. 3 would still apply to individual modes in
this average sense.

IT1I. DeTAILED PLOTS

For the 12 modes being considered, Figs. 4 to 13 give
plots of the Bessel-function argument % at the boundary
between core and cladding vs. the nondimensional fre-
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quency v, for values of § equal to 0, 0.1, 0.2, 0.3, 0.4, and
0.5. The TEy and TEg modes are not a function of §,
and so the plots of # vs. v for these modes are the same
as the plots for the TM; and TIM g modes at 6 =0.

If the dielectric constant of the core and cladding and
the radius of the core are known, one can find the value
for & and the value for v for a given optical frequency.
Applying these values to Figs. 4 to 13 gives the values
of u for the various modes. These values of 7 can then
be applied to the corresponding energy distribution
plots for those modes given in Figs. 2 and 3 to form
plots of power density and power within an annular
ring as functions of radius. The value for u represents
the value of x in Figs. 2 and 3 corresponding to the
boundary between core and cladding. By stretching the
horizontal scales of Figs. 2 and 3 so that the values
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Fig. 2. Curves for forming plots of relative power density vs.
radius for the various modes.
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Fig. 6. Plots of Bessel-function argument % at boundary vs.
nondimensional frequency V for HE,: mode.
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x =u coincide for all the modes, plots of the power dis-
tributions are formed.

At the cutoff frequency, all the energy propagates
within the cladding outside the core. As the frequency
increases, a larger and larger fraction of the energy
propagates within the core. It is convenient to define a
waveguide efficiency 7 as the relative power propagating
with the core. The efficiency 7 is defined as

power propagating within core

= &)

total propagating power

Figures 14 and 15 give plots of 5 for the various modes
as functions of normalized frequency v for the conditions
6=0 and §=0.4. For the TEy and TEy modes, use the
curves for TMy; and TMy. at 6§ =0.

)

3

RELATIVE POWER WITHIN ANNULAR RING NORMALIZED x 12

ARGUMENT X
Fig. 3. Curves for forming plots of power within an annular ring vs.
radius for the various modes.
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1V. F1ELD VECTORS

If the value of # is known for a given mode at a given
frequency, the field-vector plots can be obtained from
the following equations. Let us define parameters

w = /12— u (10)

W= ~(1/8)0 — u (11)

F = exp {i[h’(z/a) — wt]} (12)

. n(1/u? + 1/w?) (13)

(7. () /T ()] + [K (w)/wKn(w)]
n(1/u® + 1/w?)

P = G arm] + 0 — K@ k]
P;=(1—208)P; (15)
a = W Pi/uwae (16)
8 = Ju(u)/Ku(w) (7

where J./(#) and K,/ (w) are the derivatives of J.(u) and
K.(w). An alternate expression for a is

a = ecniv'1 — §(u/v)? Py (18)

where #, is the index of refraction of the core. The E and
H fields for a particular mode can be shown to be as
follows inside the core

E,=J,F cos nf (19a)
Eo=i(l /2u)[(1 = P)Jpat(1+P)Tu1] Fsinnd  (19b)
Eo=—i(W/2u)[(1 = P)Joor+(1+ P1)Jup1] F sinnd  (19¢)
H,= —aJ,Rsinnb (20a)
Ho= —ia(l /20)[(1 = Po)T_1— (1+ P3)J w1 F sinnd  (20Db)

Ho= —ia(l /2u)[(1 = P)Jna+ (14 Py) T nys] F cos 6 (20c)

where the argument of J is (ur/a). Outside the core the
fields are

E,=8K,F cos nf (21a)
Eo=iB(K /20)[(1 — P) K1+ (14 P1) K1 | F cos nf (21D)
Eo=—iB(t /20)[(1 — PY) K, 1— (14 P) K 1] F sinnd (21c)
H,= —aBK,F sin nf (22a)
H,= —iaB(/20)[(1— Py) Kpa+ (14 P) Kpia|F sinnf (22b)
Ho= —iaf(i /2w)[(1 — Pg) Kp_1— (14 P2) Kpy1] F cos 1 (22¢)
where the argument of K is (wr/a).

The quantity e, is the permittivity of free space, and
the coordinates are:

1) r=radial distance from axis of rod
2) z=distance measured along axis of rod
3) @=angle measured around axis of rod.

These equations hold for one particular power level in
the mode. The angle 6 and the distance z are measured
relative to angular and linear references that are estab-
lished by the particular characteristics of the mode,
which depend on the way the dielectric rod is excited.
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The equation for power propagating in the z direction
per unit area is

S. = 1/2(E.Hy — E4H,). (23)

Since we are interested only in waves propagating along
the core, this is the power density of interest. For small
values of 8, the power density S, varies only with radius
and is approximately continuous across the boundary
between the core and cladding. If the power of each
mode is normalized such that the power density at the
boundary is unity, the expression for power density for
small 6 then becomes

Sy = [Tux1(ur/a) /T uz1(u)]?
S, = [Knsr(wr/a)/Kuz1(w)]?

r <a
¥ >a

(24)
(25)

where the plus sign holds for EH modes and the minus
sign for HE modes, and either sign can be used for the
TE and TM modes.

V. AppricaTION OF CURVES TO RETINAL CONES

The outer segments of the retinal cones, which pre-
sumably perform the photo-detection process, are long
cylinders about one micron in diameter. Enoch {3], [4]
has observed mode patterns by examining the light
emanating from the ends of the outer segments of the
cones when the retina is illuminated. From these obser-
vations, he was able to determine the presence of at
least one mode in each of the following six sets of modes
combined within parentheses: (HEw), (TMgu, TEq,
HEw), (EHy, HEs), (HEw), (EHay, HEw), (TMog, TEo,
HE,,). As shown previously, the modes in a given set
have approximately the same plots of power density
vs. radius.

From Enoch’s observations we can estimate the di-
electric characteristics of the cones by assuming that
1) the cutoff frequencies of all the modes he observes lie
within or below the visual frequency range, and 2)
modes he does not cbserve have cutoff frequencies above
the visual frequency range. For these assumptions,
reasonable estimates of the indexes of refraction of the
outer segment of the cone and surrounding medium are
#y=1.5 and #2=1.3. The value for § would then be 0.25.
For a radius of ¢ =0.5 micron, the cutoff wavelengths
for the modes observed by Enoch would be approxi-
mately as follows: HEy; mode, infinity; (TMop, TEey,
HE:) modes, 980 mu; (EHu, HEs) modes, 610 my;
HE:;; mode, 610 mu; (EHyn, HE4) modes, 450 my;
(TMgz, TEg;, HE2) modes, 420 mu. The next higher set
of modes is (EHgy, HE;s;), which has a normalized cutoff
frequency for § =0 of 5.52. The cutoff wavelength would
be 370 mu, which lies below the visible wavelength
range.

Figures 16 to 21 gives normalized plots of power den-
sity vs. radius for the HEy;, TM g1, EHyy, HEq, EHgy, and
TM;. modes at specific wavelengths for the assumed di-
electric parameters of the retinal cones (¢ =0.5 micron,
n=1.5, no=1.3, §=0.25). The power density plots for
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Fig. 17. Plots of power density vs. radius in the retinal cones for

Fig. 16. Plots of power density vs. radius in the retinal cones !
TMy: mode, based on assumed dielectric characteristics.
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the TEu and HEy modes are approximately the same
as those for the TMy; mode; the plots for the HE;; mode
are approximately the same as those for EHy mode, etc.

If we examine the plots of mode efficiency in Figs. 14
and 15, we find that they are zero at cutoff and for most
modes rise rapidly as frequency is increased above cut-
off. However, for the HE;; and HE;; modes, the mode
efficiency stays practically zero until a significantly
higher frequency. Thus we should consider the HE;; and
HE,, modes as having effective cutoff frequencies that
are higher than the theoretical values are consequently
the plot in Fig. 19 for HE; mode at its theoretical cutoff
frequency 610 myu is indicated by a dashed curve, since
this curve does not have much physical meaning.

APPENDIX A

EQuATIONS FOR WAVEGUIDE MODES
IN A DIELECTRIC ROD

Let us consider a dielectric waveguide consisting of
an infinite cylindrical core of radius ¢ and dielectric
constant e’ surrounded by cladding of lower dielectric
constant ¢’ where both regions are perfect insulators
with a free-space magnetic permeability w,. Choose a
cylindrical coordinate system r, 6, 2, with the z axis lying
along the axis of the cylinder. Waves that propagate
down such a structure can be expressed as a sum of a
finite number of waveguide modes. Snitzer [2] shows
that, for a single mode, the 2 components of the field
within the core can be expressed as

E, = A,J,(ur/a) cos (n + ¢,) exp {i(hz — wt)}
H, = B,J,(ur/a) cos (nd + ¥,) exp {i(hz — wt)}.

(26)
(27)
The z components of the field within the cladding are

E. = C.K,(wr/a) cos (n + ¢,) exp {i(hz — wf)} (28)
H, = D,K.(wr/a) cos (n6 + ¢,) exp {'L(hz — wzf)}. (29)

The function J, is the Bessel function of the first
kind, and K, is the modified Hankel function of the first
kind which is related to the Hankel function of the first
kind H,® by

Ko(w) = (r/2)i~"1H, D (iw). (30)

The Bessel and Hankel functions are commonly tabu-
lated [6] only for # equal to 0 and 1. The values for
other orders of # can be found from the relations

Tns1(tt) + Toa(et) = 2(n/u) T u(n) 31)
Kupi(w) — Kua(w) = 2(n/w) K.(w) (32)
Tw = (= 1), (33)

K_, = K, (34)

All the modified Hankel functions are positive and de-
cay monotonically to zero as the argument increases.
The Bessel functions have the form of damped oscilla-
tions. The derivatives of the Bessel and Hankel func-
tions are given by
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2],/ = Jn_l - Jn+1 (35)
—2K, = Kn_1+ K1 (36)

For small values of w the modified Hankel function can
be approximated by

Ko(w) = Ln (2/yw),
where v = 1.781 (Euler’s constant) (37)

Ka(w) 22 (1/2)(n — 1) 1(2/w)" n> 1. (38)
For large w it approaches the expression
K.(w) = (z/zw)'/? exp {—w}. (39)

For small values of « the Bessel function can be approxi-
mated as

Tn(w) = (u/2)"/n!

The quantities (#/a) and (w/a) in (26) to (29) are
related to the propagation constant % by

(40)

(n/a)? = k> — k2 (41)
(w/a)? = b — ks? (42)
where k; and &, are defined by the relation
k= wlue = wluge. (43)
Adding (41) and (42) gives
(u/a)” + (w/a)* = ki® — kb = &no(er — ). (44)
Define the parameter v by
vt = 9%? + w2, (45)
Substituting (45) into (44) gives
v = wavpo(er — ) = 2mvavmeve — & (46)

where v is the frequency in cycles per second and where
¢ is given by € =¢/e and represents the dielectric con-
stant. Since the speed of light ¢ is given by ¢ =1/
and the wavelength N is given by A=c¢/v, (46) can be
expressed as

1 = 2rvVel' — €& (¢/c)v = 27vel — & (a/N). (47)

Thus we see that the parameter v is proportional to
frequency v and may be considered to be a normalized
frequency variable.

The transverse components of the field can be ex-
pressed as follows in terms of the longitudinal com-
ponents [2]:

1

E,=i[h/(R—1)][(0E./dr)+ (uw/k)(1/4) (0H./06)]  (48)

Ey=ih/(R>— %) [(1/r)(OE./30) — (uw/k)(OH ./dr)]  (49)

H,=i[h/(E2—1)]|[— (k2/uwh) (OE./96)+ (0 H./or)]  (50)
i[n/ -

/ (k2= 12) ][ — (ko) OE+/99) +(1/7) (0H./86)]. (51)
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At the boundary » =q, the tangential components of
E and H must be continuous. Applying this requirement
to (26) to (29) and (48) to (51) gives the following
transcendental equation that must be satisfied for each
mode [2]:

(m + n2) (Bi*m + ko®pa) = n22(1/u? + 1/w?)?
where
mo= [T () /ul ()], n2 = |K)(w)/wKa(w)]. (53)

By (35), (36), (31), and (32) these quantities can be
expressed as

(52)

m = Jwa/udy — njut = — Jupi/ud, + n/u?  (54)
e = — Ky1/wK, — Ko1/wK, + n/w. (55)
Divide (52) by k2
(n+ no)[m + (ko/ka)*na] = n2(h/k2)2(1/u2 + 1/w?)? (56)

By (43) the expression (ks/k1)?is equal to &'/e’. By (41)
the expression (k/k1)? is equal to

(h/k1)? = 1 — (u/aki)? (57)
We also note that by (45) and (44)
22 = a*(ky? — ko) = (ak)®(1 — e/ er). (58)

Combine (57) and (58) and substitute the result into
(56). This gives

(1 =+ n2) [ =+ (e2/ e1)ns]
= n2[1 — (u/2)2(1 — e/e)](1/u? + 1/w?). (59)

Define the parameter § as follows:

8= (e1 — €2)/e1. (60)
Equation (59) then becomes
(1 o) [ + (1 — 8)ms]
= n2[1 — 8(u/v)2](1/u? + 1/w®? (61)

For the case of =0, (61) reduces to the following two
simple sets of solutions, which characterize the TE and
TM modes:

—7n1 = N2 TEy» modes (62)
—q = (1 — &) TMg,, modes. (63)
By (54) and (55), these are equivalent to
Ji(u Ki(w
IEECORES'C) TEon modes  (64)
ulo(n)  wKo(w)
J 1 —-9§)K
_ 1) = ( ) Ka(w) TMg, modes. (65)

M]o('l()) B WK()(‘W)

The TE modes are called transverse electric modes,
because the electric E field is completely transverse. In
other words, there is no longitudinal component of the
E field (E.=0). Similarly, the TM modes are called
transverse magnetic modes, because the magnetic H
field is completely transverse (H,=0).
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The following is a proof that these conditions hold for
TE and TM modes. From (26) to (29) and (48) to (51),
the continuity of tangential components of E at the
boundary # =a requires for n=0

AoJo(1t) = CoKo(w)
B()Jo’(%) _ —DoKol(‘ZU) )

u w

{(66)

(67)

Continuity of tangential components of H requires that
Bo]o(%) = D()K()(ZU) (68)
A oklzjol(u) CokzzKol (W)

u w

(69)

There are two sets of solutions that satisfy these equa-
tions, corresponding to the TE modes and TM modes.
These solutions are:

TE Modes
Ag=Co=0 (70)
Jo (u K/ (w
i " o
TM Modes
By=Dy=0 (72)
Jo () _ Ky (w) (ke2k12) _ (1 — 9K (w) 3
uJ o(u) wKo(w) wKo(w) \

By (35) and (36), (71) and (73) can be shown to be
equivalent to (64) and (65). The coefficients 4, and Cp
define the longitudinal E field, and the coefficients B,
and Dy define the longitudinal H field. Thus, the TE
modes have no longitudinal E field, and the TM modes
have no longitudinal H field.

Now let us consider the more complicated case where
n>0. When there are small differences between the di-
electric constants of the core and cladding, we can ap-
proximate (61) by setting 6 equal to zero. The equation
then becomes

71 + Ny = i %(1/%2 + 1/‘102) (74‘.)

This gives two sets of solutions. We will call the modes

corresponding to the plus sign the EH modes and those

corresponding to the minus sign the HE modes. A dis-

cussion of the basis for this terminology is given by

Snitzer [2]. Substituting (54), (55), (31), and (27) iato

(74) gives for these two sets of solutions
Jur1()  Knpa(w)

— = EH modes (z > 0)

Jn*l(u) _ K,,,_1(w)
ul ()  wK,(w)

(75)

HE modes (z > 0).  (76)

If we note that #2-+w?=v we can solve (64), (65), (75),
and (76) for # and w as a function of the normalized
frequency v for each of the modes.



354

The right-hand expressions of (64), (65), (75), and
(76) are always positive and decay monotonically to
zero with increasing w. The left-hand expressions oscil-
late between + « as # changes. For each cycle of oscil-
lation the value of # varies over a limited range, but the
value of w varies from zero to infinity, and the normal-
ized frequency v varies from cutoff to infinity. There-
fore, each cycle defines a different mode and is char-
acterized by a particular value of .

When w is equal to zero, » is equal to # and we have
the lowest frequency v at which the particular mode can
exist, for other values of w the frequency v will have a
greater value; hence the value of v for which w=0 repre-
sents the normalized cutoff frequency for that mode.
To determine the cutoff frequencies for the modes we
can replace the Hankel functions in (64), (65), (75), and
(76) by the approximations given in (37) and (38) which
hold for small w. From these approximations we find
that

Kn+1
— as w— 0 n
wK,
Kn——l
— asw—0, forr=0,1 (78
wK,
K1 1
as w— 0, forn > 2. (79)

ﬁ
wK,  2(n — 1)
Hence from (64), (65), (75), and (76) we have as w—0

—-J
f TE, TM modes (80)
%Jp
_jn+1
— EH modes (81)
uJ,
Ja
— HE modes n = 1 (82)
uJ
Jn-1 1
— HE modes, n > 2, (83)
ul, 2n—1)
If we replace #n by (n—1) in (31) we have
2(n — DT e
Ty Ty = 201 = DJn (84)
%
Substituting this into (83) gives
Ja1 T2 1 1
= + - (853)
ut, 2m—-1)J, 2n—1) 2xn—1)
which is equivalent to
Jn—?
— 0. (86)

n

As w approaches zero, v approaches #, and » approaches
the normalized cutoff frequency. Hence by (80), (81),
(82), and (86), the cutoff frequencies v are given by
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Jo() =0 TE, TM modes (87)
J.(v) =0, 2> 0 EH modes (88)
Ji(@) =0 HE modes, =1 (89)
Jn2(v) =0, >0 HE modes, 22> 2. (90)

If we substitute into (80), (81), (82), and (86) the
Bessel-function approximation for small % of (40), we
find that there is only one mode that has a cutoff at
#=9=0, which is an HE mode for #=1, as indicated by
(89). This is designated the HE;; mode and is the mode
that is above cutoff for all frequencies.

These expressions for the cutoff frequencies of the
modes hold for 6=0. If the value of 8 is greater than
zero, the expressions for the cutoff frequencies for the
HE modes for #>2 change, but the others do not. It
can be shown that the cutoff frequency for this case is
given by

HE modes, n>2

which is the same as (90) for §=0. Snitzer [2] gives an
approximation in this value, which is slightly different.
Equation (91) is exact. Table I lists, in the second
column, the expressions for the cutoff frequencies for the
various modes.

For a given mode, the argument # has its minimum
value at cutoff (where it is equal to the normalized cut-
off frequency v), and it has its maximum value at in-
finite frequency. To determine this maximum value of #,
let w approach infinity. Equation (39) shows that

Kn+1 n—1
—0
wk,, wk,

Substituting these into (64), (65), (75), and (76) gives
as w— o,

>0

—0

as w— o, 92)

7

1
—0

TE, TM modes (93)
uJ,
]n+1
- —0 EH modes (94)
uJ,
Jn—l
—0 HE modes. (95)
uJn

Therefore the values of # at infinite frequency are given

by

Jilu) =0 TE, TM modes (96)
Jupi(w) =0 EH modes 97)
Jn1(2t) =0 HE modes. (98)

Snitzer shows that these same expressions hold for all
values of 8. This result is summarized in the third
column of Table I.

Snitzer [2] shows that for small values of 6 the energy
flow per unit area in the z direction is circularly sym-
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TABLE I
REevaTIiONs DEFINING CHARACTERISTICS OF VARIOUS DieLECTRIC WAVEGUIDE MODES
Energy Density
Mode Cutoff Frequency v Argument # at Infinite (Approsimation for Small 3)
(Minimum 2) Frequency (Maximum #) . .
Inside Core Inside Cladding
r<a) (r>a)
2 2
TEom, TMon 10(7)) =0 ]1(”) =0 il(—‘m’/a) [']'{’}—(EW—/E)'
Ji(u) Ki(w)
2 f 2
Eym, n 2 1 Tu@) =0,0>0 Tnpi(u) =0 [{ZL—H(ML/‘L} Kunlur/a)
AR K1 (w)
] n=1 Ju(v) =0
2 2
HE,, Tua() =0 [ﬁia_”ﬁ)_ _Igﬁzl_(z_w_/a_)
n>2 Juo(®) = 8J,(2)/(2 + 6) T (ut) Kni(w)
v >0

metric with a radial dependence proportional to
Jnx12(ur/a), where the plus sign holds for the £ modes
and the minus sign for the H modes. This expression
also holds for the TE and TM modes. Either sign can
be considered to apply because the result is the same
for n=0. Let us assume that for a particular mode the
input energy is adjusted such that the energy density
S is unity at the boundary. The energy density then can
be expressed as

where the superscript (o) applies to the energy density
outside the core. By applying this relation it is seen that
the energy density expressions in the cladding corre-
sponding to the modes shown in (99) and (100) are

SO(r) = [K—;gl—(u%r/)i)]z EH modes (102)
a+1\W
SO(r) = [EKL%)—G—)T HE modes.  (103)

It is convenient to define the efficiency % of a mode as
the per unit amount of energy propagating within the
core. By (99) to (103) the efficiency is given by

f 1 [T 1(00) T i1 (22) | 20d

. . Jn+1<7/“'/a) 2
SDO(r) = \:_”—““]Hl(u) J EH modes (99)
SO (y) = [J—J‘:%QT HE modes  (100)
n =

(104)

j:) [V (u) /T nsa(26) | xd + fw[Knﬂ(wx)/KnH(w)]xdx

where the superscript () on S denotes the energy
density inside the core. It also can be shown that for
small values of § the energy flow in the z direction per
unit area outside the core is also approximately circu-
larly symmetric with a radial dependence proportional
to Knui2(1r/a), where the plus sign holds for EH modes
and the minus sign holds for HE modes. For small
values of § it can be shown that there is not much change
of energy density across the boundary between the core
and cladding. Thus for small §,

SO (q) ¢ SO (q) (101)

where the plus sign holds for EH modes, and the minus
sign holds for HE modes. The last two columns of
Table I list the expressions for the energy densities for
the modes inside and outside the core. Equations (99)
to (104) apply to the TE and TM modes. The sign
makes no difference for n=0.

An examination of Table I shows that for §=0 the
following groups of modes have the same values of cut-
off frequency v, argument « at infinite frequency, and
energy density relations:

TEm ~ TMom ~ HEgn
HEnm ~ EH(n—2)m

(105)

forn > 2. (106)
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It can be shown that for these modes at § =0 the plots
of u vs. v for each group of modes are the same. Hence,
at any given frequency one mode of a group will give
exactly the same energy density distribution as the
other modes. However, the modes are not exactly the
same because they have different E and H field patterns.
For 6> 0 the mode patterns are different.

Equations have been presented for calculating the
values of # and w as functions of the normalized fre-
quency v for the condition of §=0. Now let us extend
this approach to obtain the values for other values of 4.
Solve (61) for 8, which gives

[n: + 12 + n(1/0® + 1/w)][m + n — n(1/u? + 1/0%)] .
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]n_1(1/t) _ Kn_l(w)
ul () wK,(w)
22 = »2? 4 w?,

HE,., modes (6 = 0) (112)

(113)

The procedure was to pick a value of # and solve the left-
hand side of (109) to (112). The corresponding value for
w was calculated. The values of # and w were then
applied to (113) to calculate the normalized frequency .

To simplify the calculations, tables of J, () and K, (w)
were read into the computer for small equal increments
of # and w in the region of interest. From the values of
K., corresponding tables were formed of (K,i1/wK,).

= (107)
12 4 m2) — (n/w)*(1/u* + 1/w%)
This can be expressed in the following form, which
shows that 6 =0 for the conditions of (75) or (76) hold:
<]n+1 + Kn+l> <]n——1 Kn—l)
uJ, wK, uJ, wkK,
= (108)

" Jn——l n Kn—l
— + N
wi\ ut, u* \wk,

where J and #; are functions of # and where K and 7,
are functions of w. Solve (75) and (76) along with
v?=u?+w? to get values of # and w at §=0 for specific
values of normalized frequency v for each mode. Then
decrease w slightly while keeping « fixed, and calculate
the value of § given in (108). (The value of w should be
decreased because this results in positive values of 8.)
This procedure gives values of § vs. w for the particular
value of #. Interpolating between these values gives the
values of w for specific values of § at the particular value
of u. Since v2=u?+w?, we can obtain from this data the
values of v vs. # for specific values of §, which provides
the generalized curves of # vs. v for the mode.

ArPENDIX B
MeTHOD OF CALCULATION

The curves were calculated on a digital computer by
a simple and efficient approximation procedure. This
appendix outlines that procedure.

The first step was to calculate # vs. » for § =0 for the
EH and HE modes and for all § for the TE and TM
modes. By (64), (65), (75), (76), and (45), the equations
to solve are

- DB T modes il (109)

uJ o(ut) h wK o(w) om modes (a
i - ™ des (alls) (110
(1 — O)uJo(n) wKo(w) om modes (all8)  (110)
() Kaga(w) EH,,, modes (6 = 0) (111)

wl (u)  wK,(w)

> Kn—l (Jn+1
wK, \ uJ,

+ Kn+1>
wkK,

To solve (109) to (112), a table look-up procedure was
used. From the value of #, the value of the function
(Juz1/uJ,) was found in accordance with (109) to (112).
This was related to the table of values of (K.+1/wK,),
and the corresponding value for w was found. Linear
interpolation was used to find intermediate values of w
between those used in the table.

Equation (107) gives the parameter § as a function of
% and w. This equation was used to calculate # vs. v for
various values of § as follows.

First, a particular value of # was chosen. The previous
calculations provided the corresponding value for w at
which ¢ is zero. When w is made less than this value,
with % held constant, the value of § becomes greater
than zero. The value for § was calculated repeatedly as
w was decreased by equal increments below its original
value, with # held constant. By interpolation, the plot
of § vs. w, for constant #, was converted to a plot of
w vs. §, for equal increments of §, at constant u. By
means of (30), these data were then converted to plots
of u vs. v for specific values of 8.

Thus, by means of interpolation and table look-up
procedures, the computer program was very simple and
fast and provided accuracy that was more than ade-
quate for the application.
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