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According to (13), if power I A 12 enters port 1, then

power A 2/ Ssl 12 will come out port 3, and if power A z is

put in port z, power 1~12/~22j2=\~[/2]~3112 will be

reflected, This is precisely the result sought.

A special case of this result, obtained by Aitken and

McLean [8], states that, if the junction is symmetric,

the power reflected at port 1 and the power out port 3

will be equal. This follows since, if the junction is

symmetric, S11=S2.2 and IA121SS11Z=IA[21S11]2.

The fact that the derivation of (13) did not require

symmetry makes the result particularly useful to the

experimentalist since he will, in general, be dealing with

junctions that are not truly symmetric.
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Generalized Plots of Mode Patterns in a Cylindrical

Dielectric Waveguide Applied to Retinal Cones

G. BIERNSON”, SENIOR MEMBER, IEEE, AND D. J. KINSLEY

Abstract—Generalized curves are presented which describe the
characteristics of the 12 lowest cutoff-frequency modes of an elec-

tromagnetic wave propagating down an infinite lossless dielectric
rod, surrounded by an infinite Iossless mediwm of lower dielectric

constant. These curves were developed by a computer study par-

ticularly to analyze the optical mode patterns generated within the
photosensitive portions of the cones of the retina. However, they

should also be particularly useful in the study of fiber optics and di-

electric microwave antennas.

I. INTRODUCTION

A DIELECTRIC rod surrounded by a medium of

lower dielectric constant acts as a waveguide.

However, the characteristics of the modes propa-

gated in such a waveguide are more complex than in the

more familiar metallic waveguide case because 1) part
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of the energy propagates outside the dielectric rod, and

2) the spatial distribution of the energy in a mode varies

with wavelength. In a metallic waveguide, all the energy

is contained within the waveguide, and the shape of a

mode is the same over the frequency range alt which it

can exist.

Stratton [1] has shown that the characteristics of the

modes can be obtained by solving a complicated trans-

cendental equation containing Bessel and Ha.nkel func-

tions. Snitzer [2] has discussed the nature of the mc)des

which arise from solutions of this equation. This paper

presents the results of a digital computer SOIU tion of this

equation, which has provided a series of generalized

curves describing the characteristics of the 12 modes

having the lowest cutoff frequencies. This approach can

be extended to include other modes. The spatial (dis-

tribution of energy in a given mode is characterizec[ by

a Bessel function of a particular order. For each mode,

the Bessel-function argument at the boundary of the

rod (designated u) is plotted vs. a nondimensional fre-
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quency v for selected values of relative dielectric con-

stant 6. From these curves, the Bessel-function argu-

ment at the boundary of the rod can be found at any

frequency, and this specifies the actual energy distribu-

tion in the rod.

The analysis of the cylindrical dielectric waveguide

appears to have a practical application in the study of

the mechanism of color vision in the human eye. The

photosensitive portions of the visual receptors of the

retina are cylindrical structures having radii roughly

equal to a wavelength of light. With such small radii,

these cylindrical structures should be considered to be

dielectric waveguides, since light can propagate down

them in only a few modes. Enoch [3], [4] has observed,

from light emanating from the tips of the receptors,

waveguide mode patterns corresponding to the 12

modes having the lowest cutoff frequencies.

There is good reason to believe that these waveguide

effects in the photosensitive portions of the cones may

produce spectral discrimination in color vision [5]. The

purpose of this study of waveguide modes has been to

explore this possibility by determining the energy dis-

tributions across the receptor produced by particular

waveguide modes, as a function of wavelength.

II. GENERAL RESULTS

We are considering the case of an infinite lossless

dielectric rod, which we will call the core, surrounded by

an infinite dielectric medium of lower dielectric con-

stant, which we will call the cladding. Our problem is to

determine the characteristics of modes that are capable

of propagating in this structure.

Appendix A presents a derivation of equations de-

scribing the characteristics of the modes. These were

evaluated by a digital computer program (which is dis-

cussed in Appendix B) to produce generalized curves

for the 12 modes with the lowest cutoff frequencies. To

help orient the reader, this section presents a simple set

of curves which provide approximate values for the

characteristics of the modes. Section I I I presents a

complete set of curves for precise calculation.

Within the core, the electric and magnetic field vec-

tors for a mode are represented by Bessel-function ex-

pressions. We will describe the characteristics of a mode

by specifying the parameter u, defined as the argument

of the Bessel function at the boundary between the core

and cladding (i. e., at the circumference of the dielectric

rod). For the case of a small difference in dielectric con-

stant between core and cladding, each mode can be

approximately described by a single curve relating the

parameter u to a nondimensional frequency V. The non-

dimensional frequency v is proportional to the actual

frequency v of the electromagnetic wave and is defined

as

v = (27ra/c) ~el’ — 62’ v = 27r4el’ – 62’ (a/A) (1)

where

v = optical frequency in c/s,

h = wavelength,

a = radius of core,

nl = index of refraction of core,

nz = index of refraction of cladding,

q’ = nlz = dielectric constant of core,

e~~= n~z = dielectric constant of cladding,

c = speed of light.

Figure 1 gives the approximate plots of u, the Bessel-

function argument at the boundary, vs. the nondimen-

sional frequency v for the 12 modes with the lowest cut-

off frequencies. These curves hold approximately for

the case of a small difference in dielectric constant be-

tween core and cladding. As is shown, a number of

modes have the same approximate plot of u vs. v for

this case. These modes also have approximately the

same energy distribution plots for this case, although

the E-field and ~-field plots are different.
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Fig. 1. Plots for ~ = O of Bessel-function argument u at boundary vs.
nondimensional frequency ZJfor the various modes.

To obtain a precise value for u, we can describe each

mode by a family of curves, each one corresponding to

a particular ratio of dielectric constant of the core to di-

electric constant of the cladding. It is convenient to

express this ratio in terms of the parameter 8, defined as

8 = (q’ – 62’)/61’ = (?212– 7-’z22)/vtl~. (2)

Section III gives for each of the 12 modes a family of

curves of u vs. v for values of ~ from O to 0.5.

The approximate curves of u vs. v in Fig. 1 represent

the limiting case where 8 approaches zero, which we ex-

press simply as 8 = O. Although the ~ = O case is un-

realistic, the curves of ZLvs. v which result for small but

realistic values of ~ are not much different from the

curve for 8 = O, which is also shown in Section 11 I.



1965 Biernson candl Kinsley: Mode Pat ferns in Dielectric Waveguide 347

For a particular mode, the electric E-field and mag-

netic H-field components along the direction of propa-

gation (called the z direction) are proportional to

E, = .Tn(zw/a) cos nf?exp { i[k’(z/a) – wf] } (3)

Hz = aY.(2w/a) sin UO exp (i[h’(z,/a) – cot]} (4)

where

n = integer from O to co representing order of mode

J.= Bessel function of nth order

Y = radial distance from axis of core

z = distance measured along axis of core

O= angle measured about axis of core

w = 2mJ = angular frequency of optical wave

a = a constant

Ii’ = normalized propagation constant.

The constant h’ is equal to

h’ = /(1/a)v’ – u%. (5)

For each value of ZL, the transcendental equation that

characterizes the modes has two infinite sets of solutions,

which define two sets of modes. For n >0, the two sets

of modes are labeled HEnv, and EHmm, where the sub-

script rn takes on integer values from one to infinity.

Snitzer [2] gives a detailed discussion of the basis for

this nomenclature. For n = O, the two sets of modes are

labeled TE,,~ and TNIm~ or specifically TEO~ and TMo~.

The TEO~ and TRIO~ modes are called transverse elec-

tric and transverse magnetic modes, respectively, be-

cause the electric E field for a TEon mode is completely

transverse (there is no E-field component in the direc-

tion of propagation), and the magnetic H field for a

TMO~ mode is completely transverse. The EHn~ and

HEn~ are called hybrid modes because they have both

E and El fields along the direction of propagation.

As was shown in (3) and (4) the subscript n is an inte-

ger (from zero to infinity) that establishes the order of

the Bessel function describing the E.- or Ha-field com-

ponents. For each value of n there are two infinite sets

of modes, labeled TEO~ and TMOm for n = O, or HE~~

and EHn~ for n >1. The parameter w varies from one

to infinity and designates the sequence of a particular

mode in either of these infinite sets. To solve for the

parameters of the modes, an oscillatory Bessel-function

expression is approximately equated to a monotonically

decaying Hankel function expression. A separate solu-

tion occurs at every cycle of the Bessel function (except

possibly the first cycle), and the parameter m describes

which of these solutions is being considered.

The higher the values of n and m, the higher is the

cutoff frequency for the mode. In those situations where

the mode concept is useful, there are usually only a few

modes that are above cutoff in the frequency range of

interest.

The power being propagated along the wa,veguid e is

characterized by the power density along the z direc-

tion, denoted Sz. If the value of 6 is small, as in the case

of retinal receptors, the power density S. for an indi vid -

ual mode is not a function of z or /3, but varies only with

the radial distance Y. Within the core the energy density

is proportional to

S3 ~ [Yn+l(u7/a)]’ forr<a (6)

where the plus sign holds for EH modes, the lminus sign

for HE modes. For the TE and TM modes, (either sign

can be used, because for n = O the expressions for both

signs are equal.

In the cladding, the field is characterized by Hankel

functions. The power density propagating in the Z

direction is proportional to

S, ~ [Kn+l(zw/a)]’ forr>a (7)

where the parameter w is defined as

~ = ~v2 — ~z. (8)

Again, in (7) the plus sign holds for the EH modes, the

minus sign for the H E modes, and either sign may be

used for the TE and Tlhl modes. The function Kr repre-

sents the flth-order modified Hankel function. This fu nc-

tion is positive for positive argument and decays mono-

tonically to zero with increasing positive argument. For

small values of 8 there is no discontinuity of pclwer

density S. across the boundary between core and

cladding.

Figure 2 gives normalized plots of Jp’(x), for P = O,

1, 2, 3. By (6), these can be used to form plots of pol wer

density S, as functions of radial distance for the various

modes by noting that the value x = u corresponds to the

boundary between core and cladding. The lmodes cor-

responding to the particular values of p are indicated.

It is often convenient to consider the power fal Iing

within an annular ring of constant width, which is

proportional to (rSz). For this purpose, Fig. 3 gives

normalized plots of XJP2(X) for @= O, 1, 2, 3, which can

be used to obtain plots of power density within an

annular ring.

When more than one mode is present, interference

between the modes can occur, and the power density S,

can vary with O and z as well as with r. Nevertheless, if

we consider the total power propagating thrcmgh an~ an-

nular ring, averaged over the axial distance z, the inter-

ference effects between modes would cancel out, and the

plots of Fig. 3 would still apply to individual modes in

this average sense.

II 1. DETAILED PLOTS

For the 12 modes being considered, Figs. 4 to 13 give

plots of the Bessel-function argument u at the boundary

between core and cladding vs. the nondimensional fre-
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quency v, for values of 8 equal to O, 0.1, 0.2, 0.3, 0.4, and

0.5. The ‘TEOI and TEOZ modes are not a function of 6,

and so the plots of u vs. v for these modes are the same

as the plots for the TIL’fOl and TM02 modes at 6 = O.

If the dielectric constant of the core and cladding and

the radius of the core are known, one can find the value

for 8 and the value for v for a given optical frequency.

Applying these values to Figs. 4 to 13 gives the values

of u for the various modes. These values of ZL can then

be applied to the corresponding energy distribution

plots for those modes given in Figs. 2 and 3 to form

plots of power density and power within an annular

ring as functions of radius. The value for u represents

the value of x in Figs. 2 and 3 corresponding to the

boundary between core and cladding. By stretching the

horizontal scales of Figs. 2 and 3 so that the values

ARGUMFNT x

Fig. 2. Curves for forming plots of relative power density vs.
radius for the various modes.

V NORMALIZED FREQUENCY

Fig. 4. Plots of Bessel-function argument u at boundary vs.
nondimensional frequency V for HE,, mode.

x = u coincide for all the modes, plots of the power dis-

tributions are formed.

At the cutoff frequency, all the energy propagates

within the cladding outside the core. As the frequency

increases, a larger and larger fraction of the energy

propagates within the core. It is convenient to define a

waveguide efficiency v as the relative power propagating

with the core. The efficiency q is defined as

power propagating within core
q=

total propagating power
(9)

Figures 14 and 15 give plots of q for the various modes

as functions of normalized frequency v for the conditions

~ = O and 8 = 0.4. For the TEOI and TE02 modes, use the

curves for TMO1 and TM02 at ~ = O.
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Fig. 3. Curves for forming plots of power within an annular ring vs.
radius for the various modes.
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Fig. 5. Plots of Bessel-function argument IL at boundary >-s.
nondimensional frequency V for TN’I o, and ‘rEO~ modes.
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Fig. 6. Plots of Bessel-function argument u at boundary Y-S.
nondimensional frequency V for HEz, mode.
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Fig. 7. Plots of Bessel-function argument u at boundary vs.
nondimensional frequency V for EH ~~mode.
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Plots of Bessel-function argument u at boundary vs.
nondimensional frequency V for Hfl?l mode. _.
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Fig. 10. Plots of Bessel-function argument u at boundary vs.
nondimensional frequency V for EH z~mode.
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Fig. 12. Plots of Bessel-function argument IL at boundary vs.
nondimensional frequency V for TM ~~and TE 0~ modes.
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normalized frequency- V for HE,,, HEzr, H31, HE41, and HEZZ

k
2
Z50

~
‘6=03 z~:

&.04

z

~

I ! 1 ,111

~**~”’--
545 -

.~~ec 6L0
:
<

,~~~w

: .,4””

?40 –
2

/“’
i
:
*

. 3,5 —.
35 40 4.5 50 5.5 60 ..5 7.0 7,5

V NORMALIZED FREQUEP$CY

Fig. 9. Plots of Bessel-function argument u at boundary vs.
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Fig. 11. Plots of Bessel-function argument u at boundary VS
nondimensional frequency V for HE4 ~mode.
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Fig. 13. Plots of Bessel-function argument u at boundary w.
nondimensional frequency V for H E!z mode.
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IV. FIELD VECTORS

If the value of u is known for a given mode at a given

frequency, the field-vector plots can be obtained from

the following equations. Let us define parameters

~=4#-# (lo)

lh’ = /(1/6)7)2 – U2 (11)

F = exp {i[lz’(z/a) – cut]} (12)

?’Z(l/u~ + 1/7-02)

p = [J/(u) /uJn(u)] + [L’(~) /@L(~)l ’13)

?’z(l/u2 + l/wJ)

‘2= [J/(2t)/zUn(u)] + (1 -0 [~n’(~)/~&(w’)1 ’14)

*3 = (1 – 6)*2 (15)

a = h’Pl/pOwa (16)

B = Jn(u)/L(~) (17)

where J.’ (u) and K.’ (w) are the derivatives of J.(u) and

K.(w). An alternate expression for a is

~ = ~oc?tl<l — 13(u/u)2 PI (18)

where nl is the index of refraction of the core. The E and

H fields for a particular mode can be shown to be as

follows inside the core

i?. = JnF COS fd (19a)

E,=i(h’/2u) [(1 –PI)J.–I+ (l+ PI) J.+d F sin @ (19b)

E@= –i(h’/2u) [(1 – PI) J~_l+ (l+ Pl)J~+l]F sin ?20 (19c)

H.= – aJ,,R sin @ (20a)

H,= –ic4?/2u) [(1 – PJJ.-I - (1 + *2) J.+I]F sin PZ8 (Zob)

HO= – @z’/2u) [(1 – P2)Jn-1+ (1 + *2) J7L+11Fcos @ (20c)

where the argument of J is (zw/a). Outside the core the

fields are

E,= ,8KnF COS nti (21a)

Er=i@(h’/2w) [(1 – *I) K.-I+ (l+pI)Kn+dF cos ~LO (21b)

E9= –ip(13’/2w) [(1 –PI)K.-I– (l+ P1)K.+I]F sin @ (21c)

H.= – a/3K.F sin M (22a)

H,= –icYB(h’/2w) [(1 –P3)K.-I+(l+*t) K.-I]F]F sin ~z~(22b)

H8 = –ia43(}z’/2zt) [(1 –P,) K.-l– (I+ PJKn+I]F cos @ (22c)

where the argument of K is (w~/a).

The quantity Co is the permittivity of free space; and

the coordinates are:

1) r = radial distance from axis of rod

2) z = distance measured along axis of rod

3) O= angle measured around axis of rod.

These equations hold for one particular power level in

the mode. The angle O and the distance z are measured

relative to angular and linear references that are estab-

lished by the particular characteristics of the mode,

which depend on the way the dielectric rod is excited.

The equation for power propagating in the z direction

per unit area is

S, = l/2(E,Hg – EoH,). (23)

Since we are interested only in waves propagating along

the core, this is the power density of interest. For small

values of 6, the power density S, varies only with radius

and is approximately continuous across the boundary

between the core and cladding. If the power of each

mode is normalized such that the power density at the

boundary is unity, the expression for power density for

small ~ then becomes

S, = [J.+, (z~r/a)/J.il(u)]2 Y<a (24)

S. = [K~+l(w~/a)/K,+ l(w)]2 t->a (25)

where the plus sign holds for EH modes and the minus

sign for HE modes, and either sign can be used for the

TE and TM modes.

V. APPLICATION OF CURVES TO RETINAL CONES

The outer segments of the retinal cones, which pre-

sumably perform the photo-detection process, are long

cylinders about one micron in diameter. Enoch [3], [4]

has observed mode patterns by examining the light

emanating from the ends of the outer segments of the

cones when the retina is illuminated. From these obser-

vations, he was able to determine the presence of at

least one mode in each of the following six sets of modes

combined within parentheses: (HEu), (TMo1, TEo1,

HEZJ , (EHn, HE31) , (HE12) , (EH21, HE41) , (TM02, TEoz,

HEa2). AS shown previously, the modes in a given set

have approximately the same plots of power density

vs. radius.

From Enoch’s observations we can estimate the di-

electric characteristics of the cones by assuming that

1) the cutoff frequencies of all the modes he observes lie

within or below the visual frequency range, and 2)

modes he does not observe have cutoff frequencies above

the visual frequency range. For these assumptions,

reasonable estimates of the indexes of refraction of the

outer segment of the cone and surrounding medium are

nl= 1.5 and nz= 1.3. The value for 8 would then be 0.25.

For a radius of a = 0.5 micron, the cutoff wavelengths

for the modes observed by Enoch would be approxi-

mately as follows: HE1l mode, infinity; (TMo1, TEo1,

HE,,) modes, 980 mp; (EH1l, HEJ modes, 610 m~;

HEI, mode, 610 m~; (EHH, HEJ modes, 450 mp;

(TM02, TEo,, HEzJ modes, 420 mp. The next higher set

of modes is (EHS1, HESJ, which has a normalized cutoff

frequency for ~ = O of 5.52. The cutoff wavelength would

be 370 mp, which lies below the visible wavelength

range.

Figures 16 to 21 gives normalized plots of power den-

sity vs. radius for the HEII, TMO1, EH1l, HEIZ, EHZ1, and

TMOZ modes at specific wavelengths for the assumed di-

electric parameters of the retinal cones (a= 0.5 micron,

n= 1.5, nz= 1.3, 6=0.25). The power density plots for
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Fig. 16. Plots of power density vs. radius in the retinal cones Fig. 17. Plots of power density ~s. radius in the retinal cones for
for HEI, mode, based on assumed dielectric characteristics. Tk’f”, mode, based on assumed dielectric characteristics.
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Fig. 18. Plots of power density VS. radius in the retinal cones for Fig. 19. Plots of power density vs. radius in the retinal cones for
EH n mode, based on assumed dielectric characteristics. HE,2 mode, based on assumed dielectric characteristics.
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EHz1 mode, based on assumed dielectric characteristics. TMOj mode, based on assumed dielectric characteristics.
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the TEO1 and HEz1 modes are approximately the same

as those for the TMO1 mode; the plots for the HEsl mode

are approximately the same as those for EHH mode, etc.

If we examine the plots of mode efficiency in Figs. 14

and 15, we find that they are zero at cutoff and for most

modes rise rapidly as frequency is increased above cut-

off. However, for the HE1l and HEIz modes, the mode

efficiency stays practically zero until a significantly

higher frequency. Thus we should consider the HE1l and

HEH, modes as having effective cutoff frequencies that

are higher than the theoretical values are consequently

the plot in Fig. 19 for HEzl mode at its theoretical cutoff

frequency 610 mp is indicated by a dashed curve, since

this curve does not have much physical meaning.

APPENDIX A

EQUATIONS FOR WAVEGUIDE MODES

IN A DIELECTRIC ROD

Let us consider a dielectric waveguide consisting of

an infinite cylindrical core of radius a and dielectric

constant cl’ surrounded by cladding of lower dielectric

constant ez’ where both regions are perfect insulators

with a free-space magnetic permeability IJO. Choose a

cylindrical coordinate system r, 19,z, with the z axis lying

along the axis of the cylinder. Waves that propagate

down such a structure can be expressed as a sum of a

finite number of waveguide modes. Snitzer [2] shows

that, for a single mode, the z components of the field

within the core can be expressed as

Eg = AnJn(tw/a) cos (M + +J exp {i(kz – C@} (26)

13z = BJn(w/a) cos (%O+ +.) exp {i(hz – d)]. (27)

The z components of the field within the cladding are

E. = CnKn(wr/a) cos (d+ @n) exp { i(lzz – cd)] (28)

He = DnKn(wr/a) cos (M+ #J exp { i(hz – d)}. (29)

The function Jn is the Bessel function of the first

kind, and Km is the modified Hankel function of the first

kind which is related to the Hankel function of the first

kind Hnflj by

K.(w) = (T/2)i”+lHn(lJ (izo) . (30)

The Bessel and Hankel functions are commonly tabu-

lated [6] only for n equal to O and 1. The values for

other orders of n can be found from the relations

.ln+l(zL) + Jn_l(Z’L) = 2(lz/?J)Jn(zL) (31)

K.+,(w) – K._,(w) = 2(?’z/w)Kn(w) (32)

J_n = (– l)”Jn (33)

K-m = K%. (34)

All the modified Hankel functions are positive and de-

cay monotonically to zero as the argument increases.

The Bessel functions have the form of damped oscilla-

tions. The derivatives of the Bessel and Hankel func-

tions are given by

2Jn’ = Jn_l – Jn~l (35)

– 2Kn’ = Kn_I + Kn~I. (36)

For small values of w the modified Hankel function can

be approximated by

Ko(w) ~ Ln (2/Tzv),

where 7 = 1.781 (Euler’s constant) (37)

Kn(zv) g (1/2) (n – 1) !(2/zv)” n>l. (38)

For large w it approaches the expression

K.(w) ~ (r/zw)’/2 exp { –w}. (39)

For small values of u the Bessel function can be approxi-

mated as

Jn(zt) g (zL/2)”/w! (40)

The quantities (a/a) and (w/a) in (26) to (29) are

related to the propagation constant k by

(u/a)z = k,’ – k’ (41)

(w/a)2 = h2 – k,’ (42)

where kl and kz are defined by the relation

kz = 0J2FE= W2/.J@. (43)

Adding (41) and (42) gives

(u/a)’ + (w/a)’ = k~2 – kz2 = Q’IJO(CI – 4. (44)

Define the parameter v by

@ = U2 + W2, (45)

Substituting (45) into (44) gives

—
v = wa~~O(61 — 62) = 27ruaVp0e0del’ — 62’ (46)

where v is the frequency in cycfes per second and where

e’ is given by d = E/eO and represents the dielectric con-

stant. Since the speed of light c is given by c = l/#yOeO

and the wavelength h is given by h = c/v, (46) can be

expressed as

v = 2vdeI’ – e2’ (a/c)v = 27rde{ – e; (a/A). (4’7)

Thus we see that the parameter o is proportional to

frequency v and may be considered to be a normalized

frequency variable.

The transverse components of the field can be ex-

pressed as follows in terms of the longitudinal com-

ponents [2]:

E,= i[lz/(k2– r%2)] [(dE./I3r) + (PW/rk) (1/4) (dHs/do)]

Ed= i [h/(k2 – IP)] [(1/Y) (13E./@ – (yti/h) (c?Hz/dr)]

H.= i [k/(k’ – h2) ] [– (k2/~tih) (&Q’dO) + (dHz/dr)]

H,= i[h/(k2–h2) ] [– (k2/jA) (13E./r3r)+ (1/Y) (dH,/do)] .

(48)

(49)

(50)

(51)
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At the boundary r = a, the tangential components of

E and H must be continuous. Applying this requirement

to (26) to (29) and (48) to (51) gives the following

transcendental equation that must be satisfied for

mode [2]:

(m+ m)(kl’m + ~2’772)= ?W1A42 + I/w’)’

where

VI = [Jn’ (24)/’241.(’4) ], 772 = [K”n’ (w)/wKn(w)] .

each

(52)

(53)

By (35), (36), (31), and (32) these cluantities can be

expressed as

VI = J,,–I/uJn – ?Z/U2 = – Jn~I/UJn + lZ/U2 (54)

q~ = – Kn–l/wA’n – Kn+I/WKm + ?Z/W2. (55)

Divide (52) by klz

(V+ ~~)[~1 + (ww’A = fi2(VQ2(Vt~2 + l/w12)2. (56)

By (43) the expression (k2/kl) 2 is equal to C2’/el’. By (41)

the expression (lz/kl) 2 is equal to

(}1/k,)’ = 1 – (u/ak,)’.

We also note that by (45) and (44)

V2 = a~(klz – k,’) = (akl)’(1 --

Combine (57) and (58) and substitute

(56). This gives

(71 + Vz)[nl + (W’4T21

(57)

62/61). (58)

the result into

= ?22[1 – (u/v)2(l – 62/61) J(l/u2 + l/w~). (59)

Define the parameter ~ as follows:

6 = (61 – 62)/61. (60)

Equation (59) then becomes

(v-l + 712)[771+ (1 – WI’]
—— nz[l — ~(u/zJ)2] (l/uz + l/W2)2. (61)

For the case of n = O, (61) reduces to the following two

simple sets of solutions, which characterize the TE and

TM modes:

—qI = q2 TEo~ modes (62)

–ql = (1 – a)qz TMo~ modes. (63)

By (54) and (55), these are equivalent to

J,(u) KI(ZW)
— —

ItJo(u) – zvKo(w)
TEc,~ modes (64)

JI(w) (1 – 6)KI(w)
— — TM O. modes. (65)

uJO(W) WKO(W)

The TE modes are called transverse electric modes,

because the electric E field is completely transverse. In

other words, there is no longitudinal component of the

E field (E. = O). Similarly, the TM modes are called

transverse magnetic modes, because the magnetic H

field is completely transverse (H, = O).

The following is a proof that these conditions hold for

TE and TM modes. From (26) to (29) and (48) to (51),

the continuity of tangential components of E at the

boundary r =a requires for n = O

AOJO(U) = COKO(W) (66)

BJ~(u) – DOK;(W)
. —. (67)

u w

Continuity of tangential components of H requires tlhat

BOJO(U) = DOKO(W) (68)

X40.k,2Jo’(zL) C&2K{(w)
. (69)

u w

There are two sets of solutions that satisfy these eq ua-

tions, corresponding to the TE modes and T&l modes.

These solutions are:

TE Modes

AO=CO=O

Jo’(zL) K~(w)
. —

UJO(ZL) – WKO(U)

TM Modes

BO=DO=O

Jo’ (U) Ko’(w)(k#kI’) (1 – a) Ko’(w)
—_— — — —.

UJO(U) WKO(W) – WKO(W)

By (35) and (36), (71) and (73) can be shown

(70)

(71)

(72)

(73)

to be

equivalent to (64) and (65). The coefficients AO anc[ CO

define the longitudinal E field, and the coefficients BO

and DO define the longitudinal H field. Thus, the TE

modes have no longitudinal E field, and the TM modes

have no longitudinal H field.

Now let us consider the more complicated case where

n> O. When there are small differences between the di-

electric constants of the core and cladding, we can ap-

proximate (61) by setting ~ equal to zero. The equation

then becomes

?1 + 712= * ?’(1/u~ + l/w2) (,74)

This gives two sets of solutions. We will call the modes

corresponding to the plus sign the EH modes and those

corresponding to the minus sign the HE modes. A dis-

cussion of the basis for this terminology is given by

Snitzer [2]. Substituting (54), (55), (31), and (27) into

(74) gives for these two sets of solutions

Jn+I(U) K.+,(w)
— . EH modes (n > O) 1(75)

uJ. (u) wK. (w)

Jn_I(u) Kn_I(w)— HE modes (n > O). (76)
uJn (U) – wK.(w)

If we note that U2+W2 =ZJ we can solve (64), (65), (Y5),

and (76) for u and w as a function of the normalized

frequency v for each of the modes.
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The right-hand expressions of (64), (65), (75), and

(76) are always positive and decay monotonically to

zero with increasing W. The left-hand expressions oscil-

late between ~ ~ as u changes. For each cycle of oscil-

lation the value of u varies over a limited range, but the

value of w varies from zero to infinity, and the normal-

ized frequency v varies from cutoff to infinity. There-

fore, each cycle defines a different mode and is char-

acterized by a particular value of m.

When w is equal to zero, v is equal to u and we have

the lowest frequency v at which the particular mode can

exist, for other values of w the frequency v will have a

greater value; hence the value of v for which w = O repre-

sents the normalized cutoff frequency for that mode.

To determine the cutoff frequencies for the modes we

can replace the Hankel functions in (64), (65), (75), and

(76) by the approximations given in (37) and (38) which

hold for small w. From these approximations we find

that

Kn+I
—+ m
WK%

K.-I
—+ m
wK.

as w--+O (77)

as w~O, for n = O, 1 (78)

K.-I 1
as w+O, for n ~ 2.

+ 2(?’2 – 1)
(79)

wK.

Hence from (64), (65), (75), and (76) we have as w--N

–Jl
—+ m TE, TM modes (80)
uJp

EH modes (81)

HE modes n = 1 (82)

Jn-1 1
HE modes, n ~ 2.

+ 2(n – 1)
(83)

iuJn

If we replace n by (n – 1) in (31) we have

2(n – I)J._I
J. + Jn-z =

u

Substituting this into (83) gives

(84)

Jn_I J.-, 1 1
—

+
2(7z – 1) - 2(n – 1)

(85)
UJ% 2(7L – l)Jn

which is equivalent to

J.-,
—---+0.

Jn
(86)

As w approaches zero, v approaches u, and u approaches

the normalized cutoff frequency. Hence by (80), (81),

(82), and (86), the cutoff frequencies v are given by

J,(v) = O TE, TM modes (87)

J.(v) = O, v > 0 EH modes (88)

JI(v) = O HE modes, n = 1 (89)

Jn_z(v) = O, v > 0 HE modes, n ~ 2. (90)

If we substitute into (80), (81), (82), and (86) the

Bessel-function approximation for small u of (40), we

find that there is only one mode that has a cutoff at

u = v = O, which is an HE mode for n = 1, as indicated by

(89). This is designated the HEII mode and is the mode

that is above cutoff for all frequencies.

These expressions for the cutoff frequencies of the

modes hold for 6 =0, If the value of 6 is greater than

zero, the expressions for the cutoff frequencies for the

HE modes for n22 change, but the others do not. It

can be shown that the cutoff frequency for this case is

given by

HE modes, n> 2

J._,(v) = – [6/(2 + I?)]Jn(V), V>o (91)

which is the same as (90) for 8== O. Snitzer [2] gives an

approximation in this value, which is slightly different.

Equation (91) is exact. Table I lists, in the second

column, the expressions for the cutoff frequencies for the

various modes.

For a given mode, the argument u has its minimum

value at cutoff (where it is equal to the normalized cut-

off frequency v), and it has its maximum value at in-

finite frequency. To determine this maximum value of u,

let w approach infinity. Equation (39) shows that

Kn+I
—+0,
wKn

Substituting these into

as~w,

JI
—-+0
uJn

J%+I
— —+()

uJ.

J._l
—+0
uJn

Ze)A’n

(64), (65), (75), and

TE, TIM modes

EH modes

HE modes.

(76) gives

(93)

(94)

(95)

Therefore the values of u at infinite frequency are given

by

J,(u) = O TE, TM modes (96)

Jn+I(ti) = O EH modes (97)

Jn-I(U) = O HE modes. (98)

Snitzer shows that these same expressions hold for all

values of ~. This result is summarized in the third

column of Table I.

Snitzer [2] shows that for small values of 8 the energy

flow per unit area in the z direction is circularly sym-
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TABLE I

RELATIONSDEFINING CHARACTERISTICSOFVARIOUSDIELECTRICWAVEGUIDEMODES

Mode

————— ———

TEom, TMo~

——— —

EHn~j n z 1

Cutoff Frequency v

(Minimum u)

——. — —— ———

Jo(v) = O

J.(v) = O

J.-,(v) = 8JJv)/(2 +8)

V>o

Argument u at Infinite

Frequency (Maximum ZL)

J,(zL) = O

.Tn+l(zJ) = o

metric with a radial dependence proportional to

Jfii12(zw/a), where the plus sign holds for the E modes

and the minus sign for the H modes. This expression

also holds for the TE and TM modes. Either sign can

be considered to apply because the result is the same

for n = O. Let us assume that for a particular mode the

input energy is adjusted such that the energy density

S is unity at the boundary. The energy density then can

be expressed as

‘(i)(”)‘[J7?2712
EH modes (99)

‘(’)(”) ‘[J;::;;]’ HE modes (100)

Energy Density

(Approximation for Small 8)

Inside Core Inside Cladding

(r <a) (r >, a)
—— —— __ ——— —

[+5?12 [%$%]’————.————

[%5$92 [%i!%fl’
.—

where the superscript (o) applies to the energy density

outside the core. By applying this relation it is seen that

the energy density expressions in the cladc[ing corre-

sponding to the modes shown in (99) and (100) are

‘(”)(’)‘[%2%72 ‘HmOdes“102)

‘(o)(”)‘[KitY12 ‘EmOdes“03)
It is convenient to define the efficiency q of a mode as

the per unit amount of energy propagating within the

core. By (99) to (103) the efficiency is given by

/11

where the superscript (i) on S denotes the energy

density inside the core. It also can be shown that for

small values of 8 the energy flow in the z direction per

unit area outside the core is also approximately circu-

larly symmetric with a radial dependence proportional

to K~+12 (u?/a), where the plus sign holds for EH modes

and the minus sign holds for HE modes. For small

values of 5 it can be shown that there is not much change

of energy density across the boundary between the core

and cladding. Thus for small 6,

s(i) (~) ~ s(o) (a) (101)

(104)

where the plus sign holds for EH modes, and the minus

sign holds for HE modes. The last two columns of

Table I list the expressions for the energy densities for

the modes inside and outside the core. Equations (99)

to (104) apply to the TE and TM modes. The sign

makes no difference for n = O.

An examination of Table I shows that fc)r 3 = O the

following groups of modes have the same values of cut-

off frequency v, argument u at infinite frequency, and

energy density relations:

TEom x TMom x HE2. (:105)

HE.~ ~ EH(.-2). for n ~ 2. (’106)
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It can be shown that for these modes at 6 = O the plots

of u vs. v for each group of modes are the same. Hence,

at any given frequency one mode of a group will give

exactly the same energy density distribution as the

other modes. However, the modes are not exactly the

same because they have different E and H field patterns.

For ti >0 the mode patterns are different.

Equations have been presented for calculating the

values of ZL and w as functions of the normalized fre-

quency v for the condition of 8 = O. Now let us extend

this approach to obtain the values for other values of 6.

Solve (61 ) for 6, which gives

JM(u) Kn-l(zv)— HE.~ modes (8 = O) (112)
uJn (u) – zvKn (w)

The procedure was to pick a value of u and solve the left-

hand side of (109) to (1 12). The corresponding value for

w was calculated. The values of u and w were then

applied to (113) to calculate the normalized frequency v.

To simplif y the calculations, tables of J.(u) and K. (w)

were read into the computer for small equal increments

of u and w in the region of interest. From the values of

K., corresponding tables were formed of (K~tl/zvK~).

~ = [m+v’,+ ?L(l/u2 + l/@)] [m+ q!l - ti(l/u2 + v@)l .

7J2(77+ 7?2)– (?’L/w)’(l/u’ + l/w2)

(107)

This can be expressed in the following form, which

shows that ~ = O for the conditions of (75) or (76) hold:

where J and ql are functions of u and where K and ~2

are functions of w. Solve (75) and (76) along with

V2 = U2+W2 to get values of u and w at 8 = O for specific

values of normalized frequency v for each mode. Then

decrease w slightly while keeping u fixed, and calculate

the value of ~ given in (108). (The value of w should be

decreased because this results in positive values of ~.)

This procedure gives values of c$vs. w for the particular

value of a. Interpolating between these values gives the

values of w for specific values of ti at the particular value

of u. Since V2 = U2+W2, we can obtain from this data the

values of v vs. u for specific values of 6, which provides

the generalized curves of u vs. v for the mode.

APPENDIX B

METHOD OF CAI.CUL.LTION

The curves were calculated on a digital computer by

a simple and efficient approximation procedure. This

appendix outlines that procedure.

The first step was to calculate u vs. v for ~ = O for the

EH and HE modes and for all ~ for the TE and TM

modes. By (64), (65), (75), (76), and (45), the equations

to solve are

J,(u) K,(w)
— — TEO~ modes (all 8) (109)

uJO(U) – WK~(ZV)

J,(u) Kl(w)
— –— TMiIm modes (all 8) (110)

(1 – 8)UJO(U) = WK,(W)

Jn+,(ZL) Kn+,(w)
— — EHn~ modes (3 = O) (111)

uJn (U) – wKn (W)

To solve (109) to (1 12), a table look-up procedure was

used. From the value of u, the value of the function

(J.+l/ZLJ.) was found in accordance with (109) to (112).

This was related to the table of values of (Knfl/wKn),

and the corresponding value for w was found. Linear

interpolation was used to find intermediate values of w

between those used in the table.

Equation (107) gives the parameter ~ as a function of

u and w. This equation was used to calculate u vs. v for

various values of 6 as follows.

First, a particular value of u was chosen. The previous

calculations provided the corresponding value for w at

which 6 is zero. When w is made less than this value,

with u held constant, the value of ti becomes greater

than zero. The value for 8 was calculated repeatedly as

w was decreased by equal increments below its original

value, with ZL held constant. By interpolation, the plot

of ti vs. w, for constant u, was converted to a plot of

w vs. ~, for equal increments of ~, at constant u. By

means of (3o), these data were then converted to ~lots

of u vs. v for specific values of 8.

Thus, by means of interpolation and table look-up

procedures, the computer program was very simple and

fast and provided accuracy that was more than ade-

quate for the application.
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